A generic nonparametric bootstrapping function for multi-state models.
Arguments
- theta
A function of
dataand perhaps other arguments, returning the value of the statistic to be bootstrapped; the output of theta should be a scalar or numeric vector- data
An object of class 'msdata', such as output from
msprep- B
The number of bootstrap replications; the default is taken to be quite small (5) since bootstrapping can be time-consuming
- id
Character string indicating which column identifies the subjects to be resampled
- verbose
The level of output; default 0 = no output, 1 = print the replication
- ...
Any further arguments to the function
theta
Value
Matrix of dimension (length of output of theta) x B, with b'th column being the value of theta for the b'th bootstrap dataset
Details
The function msboot samples randomly with replacement subjects from
the original dataset data. The individuals are identified with
id, and bootstrap datasets are produced by concatenating all selected
rows.
References
Fiocco M, Putter H, van Houwelingen HC (2008). Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Statistics in Medicine 27, 4340–4358.
Examples
tmat <- trans.illdeath()
data(ebmt1)
covs <- c("score","yrel")
msebmt <- msprep(time=c(NA,"rel","srv"),status=c(NA,"relstat","srvstat"),
data=ebmt1,id="patid",keep=covs,trans=tmat)
# define a function (this one returns vector of regression coef's)
regcoefvec <- function(data) {
cx <- coxph(Surv(Tstart,Tstop,status)~score+strata(trans),
data=data,method="breslow")
return(coef(cx))
}
regcoefvec(msebmt)
#> scoreMedium risk scoreHigh risk
#> 0.545701 1.191317
set.seed(1234)
msboot(theta=regcoefvec,data=msebmt,id="patid")
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.4219375 0.539130 0.6494073 0.558677 0.3129345
#> [2,] 0.9633390 1.277396 1.2860004 1.340357 1.0736761