A generic nonparametric bootstrapping function for multi-state models.
msboot(theta, data, B = 5, id = "id", verbose = 0, ...)
theta | A function of |
---|---|
data | An object of class 'msdata', such as output from
|
B | The number of bootstrap replications; the default is taken to be quite small (5) since bootstrapping can be time-consuming |
id | Character string indicating which column identifies the subjects to be resampled |
verbose | The level of output; default 0 = no output, 1 = print the replication |
... | Any further arguments to the function |
Matrix of dimension (length of output of theta) x B, with b'th column being the value of theta for the b'th bootstrap dataset
The function msboot
samples randomly with replacement subjects from
the original dataset data
. The individuals are identified with
id
, and bootstrap datasets are produced by concatenating all selected
rows.
Fiocco M, Putter H, van Houwelingen HC (2008). Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Statistics in Medicine 27, 4340--4358.
Marta Fiocco, Hein Putter <H.Putter@lumc.nl>
tmat <- trans.illdeath() data(ebmt1) covs <- c("score","yrel") msebmt <- msprep(time=c(NA,"rel","srv"),status=c(NA,"relstat","srvstat"), data=ebmt1,id="patid",keep=covs,trans=tmat) # define a function (this one returns vector of regression coef's) regcoefvec <- function(data) { cx <- coxph(Surv(Tstart,Tstop,status)~score+strata(trans), data=data,method="breslow") return(coef(cx)) } regcoefvec(msebmt)#> scoreMedium risk scoreHigh risk #> 0.545701 1.191317#> [,1] [,2] [,3] [,4] [,5] #> [1,] 0.4219375 0.539130 0.6494073 0.558677 0.3129345 #> [2,] 0.9633390 1.277396 1.2860004 1.340357 1.0736761