Plot the estimates of the non-parametric Aalen-Johansen estimate of the
cumulative incidence functions (competing risks data). Note this is a method
for mstate::Cuminc
and not cmprsk::cuminc
. Both return the same
estimates, though the former does so in a dataframe, and the latter in the list.
Arguments
- x
Object of class
"Cuminc"
to be printed or plotted- use.ggplot
Default FALSE, set TRUE for ggplot version of plot
- xlab
A title for the x-axis; default is
"Time"
- ylab
A title for the y-axis; default is
"Probability"
- xlim
The x limits of the plot(s), default is range of time
- ylim
The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits
- lty
The line type, see
par
; default is 1- legend
Character vector corresponding to number of absorbing states. In case of a grouped
"Cuminc"
object, with facet = FALSE the length of the vector is number absorbing states * group levels. Only relevant when use.ggplot = TRUE- cols
Vector (numeric or character) specifying colours of the lines
- conf.type
Type of confidence interval - either "log" or "plain" . See function details for details.
- conf.int
Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.
- legend.pos
The position of the legend, see
legend
; default is"topleft"
- facet
Logical, in case of group used for
"Cuminc"
, facet by it - only relevant when use.ggplot = TRUE- ...
Further arguments to plot or print method
Details
Grouped cumulative incidences can be plotted either in the same plot or in facets,
see the facet
argument.
Author
Edouard F. Bonneville e.f.bonneville@lumc.nl
Examples
library(ggplot2)
data("aidssi")
head(aidssi)
#> patnr time status cause ccr5
#> 1 1 9.106 1 AIDS WW
#> 2 2 11.039 0 event-free WM
#> 3 3 2.234 1 AIDS WW
#> 4 4 9.878 2 SI WM
#> 5 5 3.819 1 AIDS WW
#> 6 6 6.801 1 AIDS WW
si <- aidssi
# No grouping
cum_incid <- Cuminc(
time = "time",
status = "status",
data = si
)
plot(
x = cum_incid,
use.ggplot = TRUE,
conf.type = "none",
lty = 1:2,
conf.int = 0.95
)
# With grouping
cum_incid_grp <- Cuminc(
time = "time",
status = "status",
group = "ccr5",
data = si
)
plot(
x = cum_incid_grp,
use.ggplot = TRUE,
conf.type = "none",
lty = 1:4,
facet = TRUE
)