A mirror plot for comparing two different "probtrans" objects. Useful for comparing predicted probabilities for different levels of a covariate, or for different subgroups.

vis.mirror.pt(
  x,
  titles,
  size_titles = 5,
  horizon = NULL,
  breaks_x_left,
  breaks_x_right,
  from = 1,
  cols,
  ord,
  xlab = "Time",
  ylab = "Probability",
  legend.pos = "right"
)

Arguments

x

A list of two "probtrans" objects. The first element will be on the left of the mirror plot, and the second on the right

titles

A character vector c("Title for left", "Title for right")

size_titles

Numeric, size of the title text

horizon

Numeric, position denoting (in time) where to symmetrically mirror the plots. Default is maximum follow-up of from both plots.

breaks_x_left

Numeric vector specifying axis breaks on the left plot

breaks_x_right

Numeric vector specifying axis breaks on the right plot

from

The starting state from which the probabilities are used to plot

cols

A vector specifying colors for the different transitions; default is a palette from green to red, when type="filled" (reordered according to ord, and 1 (black), otherwise

ord

A vector of length equal to the number of states, specifying the order of plotting in case type="stacked" or "filled"

xlab

A title for the x-axis, default is "Time"

ylab

A title for the y-axis, default is "Probability"

legend.pos

Position of the legend, default is "right"

Value

A ggplot2 object.

See also

Author

Edouard F. Bonneville e.f.bonneville@lumc.nl

Examples

library(ggplot2) data("aidssi") head(aidssi)
#> patnr time status cause ccr5 #> 1 1 9.106 1 AIDS WW #> 2 2 11.039 0 event-free WM #> 3 3 2.234 1 AIDS WW #> 4 4 9.878 2 SI WM #> 5 5 3.819 1 AIDS WW #> 6 6 6.801 1 AIDS WW
si <- aidssi # Prepare transition matrix tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI")) # Run msprep si$stat1 <- as.numeric(si$status == 1) si$stat2 <- as.numeric(si$status == 2) silong <- msprep( time = c(NA, "time", "time"), status = c(NA, "stat1", "stat2"), data = si, keep = "ccr5", trans = tmat ) # Run cox model silong <- expand.covs(silong, "ccr5") c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans), data = silong) # 1. Prepare reference patient data - both CCR5 genotypes WW <- data.frame( ccr5WM.1 = c(0, 0), ccr5WM.2 = c(0, 0), trans = c(1, 2), strata = c(1, 2) ) WM <- data.frame( ccr5WM.1 = c(1, 0), ccr5WM.2 = c(0, 1), trans = c(1, 2), strata = c(1, 2) ) # 2. Make msfit objects msf.WW <- msfit(c1, WW, trans = tmat) msf.WM <- msfit(c1, WM, trans = tmat) # 3. Make probtrans objects pt.WW <- probtrans(msf.WW, predt = 0) pt.WM <- probtrans(msf.WM, predt = 0) # Mirror plot split at 10 years - see vignette for more details vis.mirror.pt( x = list(pt.WW, pt.WM), titles = c("WW", "WM"), horizon = 10 )