Helper function allowing to visualise state probabilities for
different reference patients/covariates. Multiple "probtrans"
objects
are thus needed.
Usage
vis.multiple.pt(
x,
from = 1,
to,
xlab = "Time",
ylab = "Probability",
xlim = NULL,
ylim = NULL,
cols,
lwd,
labels,
conf.int = 0.95,
conf.type = c("log", "plain", "none"),
legend.title
)
Arguments
- x
A list of
"probtrans"
objects- from
The starting state from which the probabilities are used to plot Numeric, as in
plot.probtrans
- to
(Numeric) destination state
- xlab
A title for the x-axis; default is
"Time"
- ylab
A title for the y-axis; default is
"Probability"
- xlim
The x limits of the plot(s), default is range of time
- ylim
The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits
- cols
A vector specifying colors for the different transitions; default is a palette from green to red, when type=
"filled"
(reordered according toord
, and 1 (black), otherwise- lwd
The line width, see
par
; default is 1- labels
Character vector labelling each element of x (e.g. label for a reference patient) - so labels = c("Patient 1", "Patient 2")
- conf.int
Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.
- conf.type
Type of confidence interval - either "log" or "plain" . See function details for details.
- legend.title
Character - title of legend
Author
Edouard F. Bonneville e.f.bonneville@lumc.nl
Examples
library(ggplot2)
data("aidssi")
head(aidssi)
#> patnr time status cause ccr5
#> 1 1 9.106 1 AIDS WW
#> 2 2 11.039 0 event-free WM
#> 3 3 2.234 1 AIDS WW
#> 4 4 9.878 2 SI WM
#> 5 5 3.819 1 AIDS WW
#> 6 6 6.801 1 AIDS WW
si <- aidssi
# Prepare transition matrix
tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI"))
# Run msprep
si$stat1 <- as.numeric(si$status == 1)
si$stat2 <- as.numeric(si$status == 2)
silong <- msprep(
time = c(NA, "time", "time"),
status = c(NA, "stat1", "stat2"),
data = si, keep = "ccr5", trans = tmat
)
# Run cox model
silong <- expand.covs(silong, "ccr5")
c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),
data = silong)
# 1. Prepare patient data - both CCR5 genotypes
WW <- data.frame(
ccr5WM.1 = c(0, 0),
ccr5WM.2 = c(0, 0),
trans = c(1, 2),
strata = c(1, 2)
)
WM <- data.frame(
ccr5WM.1 = c(1, 0),
ccr5WM.2 = c(0, 1),
trans = c(1, 2),
strata = c(1, 2)
)
# 2. Make msfit objects
msf.WW <- msfit(c1, WW, trans = tmat)
msf.WM <- msfit(c1, WM, trans = tmat)
# 3. Make probtrans objects
pt.WW <- probtrans(msf.WW, predt = 0)
pt.WM <- probtrans(msf.WM, predt = 0)
# Plot - see vignette for more details
vis.multiple.pt(
x = list(pt.WW, pt.WM),
from = 1,
to = 2,
conf.type = "log",
cols = c(1, 2),
labels = c("Pat WW", "Pat WM"),
legend.title = "Ref patients"
)