Helper function allow to visualise state probabilities for different reference patients/covariates. Multiple "probtrans" objects are thus needed.

vis.multiple.pt(
  x,
  from = 1,
  to,
  xlab = "Time",
  ylab,
  xlim = NULL,
  ylim = NULL,
  cols,
  lwd,
  labels,
  conf.int = 0.95,
  conf.type = c("log", "plain", "none"),
  legend.title
)

Arguments

x

A list of "probtrans" objects

from

The starting state from which the probabilities are used to plot Numeric, as in plot.probtrans

to

(Numeric) destination state

xlab

A title for the x-axis; default is "Time"

ylab

A title for the y-axis; default is "Probability"

xlim

The x limits of the plot(s), default is range of time

ylim

The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits

cols

A vector specifying colors for the different transitions; default is a palette from green to red, when type="filled" (reordered according to ord, and 1 (black), otherwise

lwd

The line width, see par; default is 1

labels

Character vector labelling each element of x (e.g. label for a reference patient) - so labels = c("Patient 1", "Patient 2")

conf.int

Confidence level (%) from 0-1 for probabilities, default is 0.95 (95% CI). Setting to 0 removes the CIs.

conf.type

Type of confidence interval - either "log" or "plain" . See function details for details.

legend.title

Character - title of legend

Value

A ggplot object.

Author

Edouard F. Bonneville e.f.bonneville@lumc.nl

Examples

library(ggplot2) data("aidssi") head(aidssi)
#> patnr time status cause ccr5 #> 1 1 9.106 1 AIDS WW #> 2 2 11.039 0 event-free WM #> 3 3 2.234 1 AIDS WW #> 4 4 9.878 2 SI WM #> 5 5 3.819 1 AIDS WW #> 6 6 6.801 1 AIDS WW
si <- aidssi # Prepare transition matrix tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI")) # Run msprep si$stat1 <- as.numeric(si$status == 1) si$stat2 <- as.numeric(si$status == 2) silong <- msprep( time = c(NA, "time", "time"), status = c(NA, "stat1", "stat2"), data = si, keep = "ccr5", trans = tmat ) # Run cox model silong <- expand.covs(silong, "ccr5") c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans), data = silong) # 1. Prepare patient data - both CCR5 genotypes WW <- data.frame( ccr5WM.1 = c(0, 0), ccr5WM.2 = c(0, 0), trans = c(1, 2), strata = c(1, 2) ) WM <- data.frame( ccr5WM.1 = c(1, 0), ccr5WM.2 = c(0, 1), trans = c(1, 2), strata = c(1, 2) ) # 2. Make msfit objects msf.WW <- msfit(c1, WW, trans = tmat) msf.WM <- msfit(c1, WM, trans = tmat) # 3. Make probtrans objects pt.WW <- probtrans(msf.WW, predt = 0) pt.WM <- probtrans(msf.WM, predt = 0) # Plot - see vignette for more details vis.multiple.pt( x = list(pt.WW, pt.WM), from = 1, to = 2, conf.type = "log", cols = c(1, 2), labels = c("Pat WW", "Pat WM"), legend.title = "Ref patients" )